Mathematical Modelling of Carbon Fee and Dividend (aka Climate Income)

Dave Waltham, October 2nd 2021

The CCL-Europe climate income calculator assumes that household emissions increase with household income. The simplest possible mathematical model that achieves this is

\[E_0 = aI \]

(1)

where \(E_0 \) is household emissions (at the model start) and \(I \) is household disposable income. I determine \(a \) by assuming that an adult on median income has the average per capita emissions. This gives a different value for \(a \) for each European country.

In addition, emissions change with time, \(t \), by a factor \(R \) so that emissions are

\[E(t) = R(t)E_0 \]

(2)

Carbon-fees for each person are then

\[F = PE \]

(3)

where \(F \) is the fee and \(P \) is the price. The dividend (i.e. climate income per adult) is found by assuming that an individual with average emissions will receive a dividend equal to their carbon-fees. Hence, the dividend per person is

\[D = P\bar{E}_0 \]

(4)

where \(\bar{E}_0 \) is the average emissions per person at the beginning. The calculator assumes that children receive half this dividend.

Emission reductions are assumed to be driven by the carbon price (i.e. \(R \) decreases as \(P \) increases). Many choices could be made for the mathematical form of this but I have used the sigmoidal function

\[R = \begin{cases} 0.5 + 0.5 \cos \left(\frac{\pi P}{P_{\text{max}}} \right) & P < P_{\text{max}} \\ 0 & P \geq P_{\text{max}} \end{cases} \]

(5)

where \(P_{\text{max}} \) is the price needed to eliminate emissions entirely. This sigmoidal form fits the REMI model of the US economy for \(P_{\text{max}} \sim \$400/\text{tonne CO}_2 \). The CCL-Europe calculator uses a slightly more conservative estimate that \(P_{\text{max}} = €400/\text{tonne CO}_2 \).

Finally, the model needs a price policy and I assume a simple ramping up with time

\[P = P_{\text{start}} + \alpha t \]

(6)

where \(P_{\text{start}} \) is the initial price, \(\alpha \) is the price increase each year and \(t \) is time since carbon pricing was introduced. More specifically, I have used \(P_{\text{start}} = €15/\text{tonne} \) and \(\alpha = €10/\text{tonne/} \text{year} \).